Inhibition of the CXCL12/CXCR4-Axis as Preventive Therapy for Radiation-Induced Pulmonary Fibrosis
نویسندگان
چکیده
BACKGROUND A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. METHODOLOGY/PRINCIPAL FINDINGS The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CONCLUSIONS/SIGNIFICANCE CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.
منابع مشابه
The Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines
It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...
متن کاملThe Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines
It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...
متن کاملImpact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice
Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely...
متن کاملRole of CXCL12/CXCR4-Mediated Circulating Fibrocytes in Pulmonary Fibrosis
Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix (ECM) and remodeling of the lung architecture, with clinically irreversible loss of lung function. The exact molecular and cellular mechanisms of pulmonary fibrosis are complicated. Many types of cells are involved in the pathogenic processes. The chemokine (C-X-C motif) ligand 12 (CXCL12) can attract circulatin...
متن کاملEarly and late preventive effect of Nigella sativa on the bleomycin-induced pulmonary fibrosis in rats: An experimental study
Objective: Pulmonary fibhrosis is a disease of the connective tissues in the respiratory system. Nigella sativa has been used for the treatment of pulmonary diseases like asthma. This study investigated the early and late preventive effect of methanolic extract of N. sativa on a bleomycin- induced pulmonary fibrosis model. Materials and Methods: This study was carried out using 52 rats. Pulmona...
متن کامل